
Open Strings

Fingering inference for violin music

Joseph Morag

Submitted in partial fulfillment of the requirements for the
Master of Music in Music Technology

in the Department of Music and Performing Arts Professions
Steinhardt School

New York University

Advisor: Dr. Brian McFee
Reader: Dr. Tae Hong Park

April 21, 2021

Abstract

Choosing fingerings for violin music is a hard problem, both for humans and computers. Though
there is a great deal of pedagogical literature by famed teachers and performers on the subject,
most violinists wind up developing the skill of picking a fingering only through years of study
and trial and error. Besides being a hard problem, choosing fingerings is one with no agreed upon
optimal solution. What distinguishes a good fingering from a bad one is highly individualized to
a specific musician’s tastes.

This thesis describes OpenStrings, an expert system style inference engine for fingerings with
configurable rules to account for the individual preferences of the user. Evaluation by expert vi-
olinists of the generated fingerings concluded that the results are competitive with human gen-
erated fingerings.

1

https://open-strings.com

Acknowledgments

I’ve wanted to do a project like this since the end of college. After such a long time of this being
an idea floating around my head, I’m ecstatic to have something tangible to show for it. There are
so many people who had a hand in making this thesis possible.

To my family, thank you for your constant and loving support throughout this and all of my
educational endeavors, and for always believing, no, knowing that I would be able to finish this,
even when I didn’t.

To my wonderful partner, Lauren, thank you for helping me through our marathon editing
sessions, and for actually reading the entire thing. I love you.

To my advisor, Dr. Brian McFee, thank you for providing such valuable insights and advice,
and for spending so much time with me in office hours talking about everything from algorithms
to graph theory to programming languages.

To the Haskell community, thank you for creating the libraries which allowed me to write
this thesis in my favorite programming language. Special thanks go to Ed Kmett for writing lens
and answering my questions about it on reddit, and to Michael Snoyman for yesod.

To Simon Schmid, thank you for working with me to add string numbers on grace notes to
OpenSheetMusicDisplay. I probably spent more time on that than I should have, but seeing those
tiny Roman numerals appear in the right place was worth it.

To my coworkers at Lantern, thank you for your enthusiasm for hearing me talk about this
project, and for teaching me enough about the internet so that I could actually implement it.

To my friends Sophia, Itamar, Nicholas, Camille, Gabrielle, Victor, Emelia, and Ian, fantastic
musicians all, thank you for being the first to use this and for your crucial feedback.

Lastly, to my beloved violin teachers, Anna Pelekh and Aaron Rosand, thank you for teaching
mewhat I wanted on the violin and how to get it. I wish you could have gotten to see this finished.
You would have enjoyed it.

2

Contents

1 Introduction 6

2 Literature Review 8
2.1 Pedagogical Approaches to Violin Fingering . 8
2.2 Algorithmic Approaches to Violin Fingering . 11

3 Methodology 14
3.1 Fingering Database . 14
3.2 User interface . 15

3.2.1 Upload a passage and render it as sheet music 15
3.2.2 Conveniently edit fingerings and persist them to the database 15
3.2.3 Query the server for an inferred fingering, respecting any entries made

by the user . 16
3.3 Fingering inference . 17
3.4 Evaluation . 24

4 Results 25
4.1 Fingering samples . 25

4.1.1 Generated fingerings . 25
4.1.2 Control group fingerings . 25

4.2 User responses . 26
4.3 Comparison with prior work . 27

5 Conclusion 33
5.1 Discussion . 33
5.2 Future work . 33

3

CONTENTS

5.2.1 Longer term memory . 33
5.2.2 User interface improvements . 34
5.2.3 Fingering data collection . 34
5.2.4 Extensibility . 35

A Computer Representations of Symbolic Music 36

B Selected code samples 38
B.1 Merge multiple voices into time steps . 38
B.2 Fingering penalties . 40

4

List of Figures

1.1 An excerpt from Beethoven’s last sonata, Op. 96, with fingerings from five edi-
tions. Reproduced from Ysaÿe, Exercises et Gammes. 6

2.1 How Flesch and Galamian would finger the same arpeggio 10

3.1 Entity Relationship Diagram for OpenStrings . 15
3.2 A snapshot of the fingering editor. The blue notehead is currently selected. 17
3.3 Transformation of multiple voices into a single voice 18
3.4 A graphical representation of the fingering inference problem 19

4.1 Prokofiev: Violin Concerto No.2, Op.63, I. Allegro moderato mm. 101-104 26
4.2 Bartók: Violin Concerto No. 2, III. Allegro molto mm. 185-189 26
4.3 Ysaÿe: Solo Sonata No. 3, Op. 27 “Ballade” mm. 76-87 27
4.4 Strauss: Don Juan, Op. 20 mm. 31-36 . 28
4.5 Bruch: Scottish Fantasy, Op. 46, I. Introduction mm. 66-82 28
4.6 Mozart: Violin Concerto No. 4, K. 218, I. Allegro mm. 42-56 29
4.7 How comfortable do you find this fingering to play? 29
4.8 How expressive do you find this fingering allows a violinist to be? 30
4.9 How idiomatic do you find this fingering? . 30
4.10 Would you say this fingering was generated by a human or by a computer? 31
4.11 Comparison of OpenStrings and prior work by Nagata et al. 31
4.12 Comparison of OpenStrings and prior work by Maezawa et al. 32

5

Chapter 1

Introduction

Choosing fingerings is an integral part of any violinist’s skill set. A good fingering can greatly
simplify the execution of a passage of music, whereas a bad one can render it impossible to play.
Prolonged use of an awkward fingering can even lead to pain and eventual injury. Fingerings
are highly personal; the astute listener can distinguish Heifetz from Kreisler simply by how they
approach shifting. Even within the space of several measures of a “simple” scalar passage from
Beethoven’s last sonata (see Figure 1.1), we see that though there is agreement in the first two
measures, there are at least four equally valid ways to play the rest of the excerpt.

Figure 1.1: An excerpt from Beethoven’s last sonata, Op. 96, with fingerings from five editions.
Reproduced from Ysaÿe, Exercises et Gammes.

Devising a fingering is not only important for great violinists, but for players at all skill levels.
Beginning students usually rely entirely on their teachers for fingerings, and it generally takes
many years before they feel comfortable designing their own fingerings that suit their hands.
Unfortunately, many violinists may never develop the necessary intuition to figure out good fin-
gerings, relying on suggestions from their teachers, friends, or printed editions for their entire
careers.

Why is this the case? Since the instrument’s standardization in the 18th century, the average
level of violin playing has only improved, due to a combination of more accessible learning re-

6

sources, new technical discoveries, and a steadily increasing number of practicing violinists. One
only need observe that the vast majority of professionals and many advanced students can play
pieces by Paganini or Wieniawski that, at the time they were composed, were only executable by
a handful of the greatest violinists in the world. Looking even further back in history, the con-
certos of de Beriot, chamber violinist to King Charles X of France, which he wrote for a violinist
of his own ability, are today given to young children to perform.1

Although knowledge of violin playing has come so far in the centuries since the instrument’s
creation, devising fingerings remains a difficult problem. For one, most performers do not share
their fingerings publicly with the rest of the violin-playing community. This is due to a combi-
nation of the desire to guard “trade secrets” and the lack of a platform on which to easily publish
such information. After all, there are only a handful of violinists who edit published editions. The
other reason is simply because the problem is almost intractably hard. Most notes on the violin
can be played on all four strings with all four fingers. For an n note passage, this leads to a naive
upper bound of≈ 16n possible fingerings. Problems with exponential search spaces are common
in computer science and artificial intelligence, and there are algorithms for dealing with them
that are vastly more efficient than brute-force search. While there exists prior work that takes
advantage of these methods, no existing system generates fingerings comparable to those gen-
erated by an expert human or enjoys widespread use in the performing community. This thesis
addresses both of these concerns by creating a website for violinists to easily share fingerings with
their colleagues, and integrating a novel inference engine that generates fingerings comparable
to those made by human practitioners.

Chapter 2 provides an overview of prior work in pedagogical and algorithmic approaches
to fingering assignment. Chapter 3 describes the implementation of the user interface and the
inference engine. Chapter 4 summarizes the results of a survey of expert violinists judging the
quality of generated fingerings and compares them with previous algorithmic systems.

1https://www.youtube.com/watch?v=NAGazAcwCm8

7

https://www.youtube.com/watch?v=NAGazAcwCm8

Chapter 2

Literature Review

2.1 Pedagogical Approaches to Violin Fingering

The study of violin fingering methodology is an ancient one, far predating the advent of modern
computers. One of the oldest examples in the literature is the Violinschule by Leopold Mozart,
father of the legendary Wolfgang Amadeus (Mozart et al., 1756/1985). Although it originally
appeared in 1756, the elder Mozart’s advice on fingerings is still quite useful to this day. He
advocates for the judicious use of extensions to reach higher notes on the E stringwhile remaining
in “Whole” (what today we would call “Third”) Position, as well as for the need to remain in a
single position as much as possible during technical passages in order to minimize shifting. He
is even aware of the technique of changing fingers on repeated instances of the same note in
order to prepare the hand for an upcoming passage. Some of his writing, however, has not aged
as well. By calling Third Position “Whole” and Second Position “Half” as well as the order in
which he presents them in his treatise, he has engendered an aversion among many violinists
at all levels to using Second Position for any reason whatsoever. Even today, many professional
violinists take extraordinary measures to avoid all even positions in passages where using other
fingerings would ostensibly incur more difficulties. In fairness to Mozart, much of the music he
would have played at court was in D or A major, keys in which using even positions is awkward
and unnecessary. In modern repertoire, with music written in all keys, and quite often no key at
all, violinists stand to benefit greatly from the use of even positions.

During the 20th Century, violin technique grew rapidly, with many pedagogues forming com-
peting schools of thought on how the instrument should be played. By this point, innovations
such as the modern Tourte bow and the chinrest were in universal use by violinists, obsoleting

8

2.1. PEDAGOGICAL APPROACHES TO VIOLIN FINGERING

many of the practices championed by Leopold Mozart’s Violinschule. In Western Europe, one of
the preeminent violin teachers was Carl Flesch, whose students included superstars Ivry Gitlis,
Ida Haendel, and Joseph Hassid. He was one of the first to point out that in many passages, it is
desirable to play them higher on the G string than more comfortably on the D or A strings, as the
sound on the G is more brilliant and penetrating (Flesch et al., 1924/2000; Flesch et al., 1966/1978).
During his lifetime, the steel E string came into prominence, displacing the traditionally used
plain gut E. Flesch was a strong opponent of this change, advocating that the open E be replaced
in most cases by the same pitch on the A string, due to the former’s harsh sound. Today, the plain
gut E is almost non-existent, but Flesch’s admonition to avoid the open steel E is still heeded by
many violinists, especially in orchestral settings.

In America, violin pedagogy over the last 70 years has been dominated by the teachings of Ivan
Galamian, who produced such luminaries as Itzhak Perlman, Pinchas Zukerman, and KyungWha
Chung. One of Galamian’s primary contributions to the art of violin fingering was his insight that
the hand’s frame remain intact to as great an extent as possible, in order to preserve intonation. To
that end, he believed in the paramount importance of practicing octaves, as they set the hand’s
position perfectly in all but the highest reaches of the fingerboard (Galamian, 1962). Another
of Galamian’s innovations was the use of the “creeping” method in moving between positions.
Essentially, instead of only stretching or shifting, one can combine the two motions by extending
the first or fourth finger to a note and then using it as an anchor to drag the rest of the hand into
position.

Unlike Flesch, Galamian did not have an aversion to the open E string, and recommended its
use rather frequently in his Contemporary Violin Technique (Galamian & Neumann, 1966). Both
Flesch and Galamian recognized the utility of the half step shift, i.e. using the same finger for two
consecutive notes a half step apart, in facilitating smooth transitions between positions while
minimizing undesirable noise from shifting, although Galamian recommended its use in many
more scenarios than Flesch.

Peter Myers presents very thorough comparison of the fingering guidelines of Flesch and
Galamian in his thesis (Myers, 2011), which compiles a huge corpus of editions fingered by the
two teachers and distills them into concise, general guidelines for various types of passages. Sum-
marizing Myers’ work, the most pronounced differences in Flesch’s and Galamian’s recommen-
dations are that

• Very broadly speaking, Flesch places more emphasis on technical considerations in choos-
ing fingerings while Galamian insists that musical considerations be the more important

9

2.1. PEDAGOGICAL APPROACHES TO VIOLIN FINGERING

determining factor.

• In technical passages, Galamian favors shifting while Flesch favors string crossings, but in
lyrical passages, their opinions are reversed.

• In arpeggios, Flesch advocates using different fingers for consecutive notes, while Galamian
advises shifting with the same finger (see Figure 2.1 for an example).

• In the matter of oblique crossings, where over two consecutive notes the same finger moves
a string over but stays at the same distance from the nut, Galamian allows for them if the
notes are separated by a bow change or other suitable break in the sound, whereas Flesch
is against their use in nearly all cases.

• Flesch recommends the use of harmonics much more liberally than Galamian.

• Galamian permits the use of open strings in lyrical passages whereas Flesch forbids it.

• Flesch shies away from using the fourth finger for expressive notes while Galamian en-
courages violinists to develop its strength so that it can vibrate as well as the other three
fingers.

• Flesch favors portamento much more than Galamian.

• Galamian advises different fingerings for Baroque and Romantic passages, while Flesch
adheres to the same general guidelines no matter the era of the music.

1 3 1
1 3 1

1 3 1
4

(a) Carl Flesch
1 3 1

0 2 1
4 2 1

4

(b) Ivan Galamian

Figure 2.1: How Flesch and Galamian would finger the same arpeggio

Although much of the contemporary violin methodology is derived from the teachings of
Flesch and Galamian, there are several other pedagogues and violinists who made very important
contributions to the fingering literature. One of the preeminent figures in the Soviet violin school,
I. M. Yampolsky, puts forth the notion of an anchoring finger to secure the hand during awkward
passages in order to ensure good intonation (Yampolsky et al., 1980). In addition to reiterating

10

2.2. ALGORITHMIC APPROACHES TO VIOLIN FINGERING

many of the points of Galamian and Flesch, Yampolsky also posits that bowings must be taken
into account as well as just the notes when determining fingerings. Otherwise, Yampolsky’s
guidelines are fairly close to what Flesch recommends.

The great Belgian violinist, Eugène Ysaÿe, best known for his 6 solo sonatas, presents sev-
eral novel ideas absent from the works of Flesch and Galamian in his oft-overlooked Exercises

et Gammes. These include the use of harmonics in fast passages to ease shifting and the nearly
ubiquitous use of even positions and half step shifts in order to facilitate technical comfort (Ysaÿe
& Szigeti, 1967). Max Rostal, in his foreword and supplementary fingerings for Flesch’s Scale

System (Flesch & Rostal, 1942/1987), advocates for the one finger half step shift to be the most
used transition mechanism presented in the book, though, when playing chromatic scales which
contain exclusively half steps, modern practice recommends the “newer” fingering method of 1-
2-1-2-3-4 on a single string over repeated half-step shifts, as it sounds much cleaner. Ruggiero
Ricci, widely known for his thrilling renditions of the most challenging virtuoso works in the
solo repertoire, advocates for an extreme version of Galamian’s creeping method he calls “po-
sitionless” violin playing, using glissandi exclusively to traverse the instrument (Ricci & Zayia,
2007). Given this wide range of opinions, we see that though there is broad agreement on some
foundational aspects of violin fingering, there is no “one-size-fits-all” solution.

2.2 Algorithmic Approaches to Violin Fingering

The first work in algorithmic fingering for string instruments is by Samir Sayegh in his Master’s
thesis (S. Sayegh, 1988). In it, Sayegh lays out the mathematical foundation of the problem as a
graph searching algorithm over a network of nodes. The network is defined as a series of layers,
with each layer representing a single note in the passage and the individual nodes in the layer
representing a possible fingering for that note. Between nodes in consecutive layers there is a
transition penalty which describes the difficulty in moving the hand between two notes on the
finger or fretboard. Finding a good fingering is therefore reduced, in Sayegh’s framework, to
finding a path through the graph that minimizes the total transition penalty accumulated during
the traversal.

Sayegh proposes two distinct methods for finding this path. The first, the use of an expert
system, relies onmusicians to supply rules concerning fingerings to the computer, which can then
use these rules to minimize the overall transition penalty. The second is to use Viterbi’s algorithm
(VA) to mathematically optimize the path. VA is an extremely general technique that, given a set
of states, a set of transition probabilities between those states, and an ordered list drawn from

11

2.2. ALGORITHMIC APPROACHES TO VIOLIN FINGERING

the state set, returns the most likely path through the list using the provided transitions (Forney,
1973). It has been successfully applied in many domains, including parsing, speech recognition,
and biological sequence alignment (Klein & Manning, 2003; Rabiner, 1989; Zhihui Du et al., 2010).

Each system has its advantages and disadvantages. The optimization approach is rather
straightforward to implement and Viterbi’s algorithm runs in linear time with the size of the
input passage, which is as fast as theoretically possible (it is impossible to decide on a fingering
without at least looking at the entire passages from beginning to end). However, the algorithm
assumes that the problem of fingering is a Markov process, i.e. that the fingering of the next note
in the passage can always be decided by considering only the immediately preceding note. This is
mostly a reasonable assumption, but there certain cases where having a greater context window
is desirable. For example, passages with sequences, i.e. units of music repeated several times,
each time in a different register, often benefit from each instance of the unit being fingered iden-
tically. This aids in memorization, ease of execution, and musical expression, as the uniformity
of shifts reinforces the similarity between units. However, without lookahead context, the algo-
rithm considers only one interval at a time and the fact that a passage contains a sequence is lost
to it. The optimization approach also renders the decision process somewhat opaque to the user
of the fingering system, as raw transition weight data is impenetrable to anyone not intimately
familiar with the inner workings of the system. The expert system, on the other hand, lends itself
to introspection by the user quite naturally, as the expert rules used in making decisions would
be easily understood by violinists who possess vast expert knowledge themselves. However, this
poses a problem in itself, as true experts are few and far between, and expressing their knowledge
in a form usable by a computer is a monumental task, not to mention that experts often disagree
with each other. Sayegh also argues that expert systems quickly become overly domain specific,
but that is not a problem as long as one is interested in only one particular domain.

Since the 80s, there have been several improvements to Sayegh’s original work. Radicioni
et. al extend the method by first splitting a given passage into musically separate phrases and
then fingering those (Radicioni et al., 2004). As the problem’s complexity is exponential in the
length of the input passage without the Markov process assumption discussed above, shortening
the passage is a marked improvement, as it allows for the assumption to be weakened without
disastrous performance implications.

One of the primary difficulties in automated fingering is the myriad considerations aside from
simply the notes and rhythms indicated in thewritten score that can go into amusician’s fingering
decisions. The previously discussed methods of constraint optimization have no provisions to
account for dynamics or articulation. For example, there are often places in music where it is

12

2.2. ALGORITHMIC APPROACHES TO VIOLIN FINGERING

natural to take a breath or make a slight pause, not indicated by a rest. These places are excellent
locations to make a shift, as it will be inaudible, but the computer has no knowledge of this feature
of the music and cannot use it. “Teaching” an automated system to understand music on a deep
enough level to develop human-like intuition for where to place musical breaks just by looking at
the score is a Herculean task. Maezawa et al. circumvent this difficulty entirely by supplementing
the score with an audio recording to recreate the fingering used in that performance (Maezawa
et al., 2012). They augment the Viterbi model of Sayegh with additional constraints derived from
analyzing the bow changes, shifts and string crossings present in the recording.

While Maezawa et al. account for individuality among violinists by incorporating audio into
their algorithm, Nagata et. al do so by incorporating the expressiveness of certain fingerings,
defined as some function of string number and finger number, into their purely symbolic model
(Nagata et al., 2014). The authors make the assumption that a violinist’s skill level correlates
directly with their ability to play shorter notes more expressively. Under these premises, profes-
sional violinists are recommended fingerings in higher positions on lower strings while beginner
violinists are recommended to stay in lower positions and use more open strings. This trend is
similar to the recommendations of most teachers. Nagata et al. achieve fingerings very similar
to textbook examples for the beginner level dataset with their model tuned to output beginner
fingerings, but at higher skill levels, the inferred fingerings do not correspond to those commonly
used by professionals (see 4.3 for details).

While these results are promising, it is unclear if they scale to longer and more difficult pas-
sages. It is also impossible to actually use these systems without acquiring the code from the re-
spective authors. This prohibits usage by primarily non-technical violinists, though distribution
of the system is less of a research problem than a software engineering one. The other problem
with these existing systems is that they do not allow for fine-grained control of the algorithm by
the user. One can provide a specific recording or set the skill level parameter, but those methods of
configuration are not precise enough in constraining the algorithm to respect specific guidelines
like avoiding oblique finger crossings.

13

Chapter 3

Methodology

The user interfacing contribution of this thesis, open-strings.com, is a monolithic web application
consisting of a backend server connected to a PostgreSQL database, serving HTML, JavaScript,
and CSS to a client web browser. It is written using the Yesod1 web framework in the Haskell
programming language. The backend, in addition to managing HTTP requests, runs the fingering
inference algorithm.

3.1 Fingering Database

The model for the database uses common design practices. Users, identified by email, can upload
and view excerpts of pieces that are registered in the database. Metadata for many common
works on IMSLP2 has been already scraped and entered, but a form is provided to add previously
unknown works, composers, and movements to their respective tables. A music Entry consists of
the sheet music from an excerpt of a work, with or without fingering annotations, and a textual
description. The notation in Figure 3.1 where entity A (“train tracks”) points to entity B (“ring
with a crow’s foot”) indicates a relationship in which exactly one of entity A is related to zero or

more of entity B.
1https://www.yesodweb.com/
2https://imslp.org

14

https://open-strings.com
https://www.yesodweb.com/
https://imslp.org

3.2. USER INTERFACE

Figure 3.1: Entity Relationship Diagram for OpenStrings

3.2 User interface

At minimum a user of OpenStrings must be able to have the ability to perform the following
operations:

3.2.1 Upload a passage and render it as sheet music

We render MusicXML (Good, 2009) documents in the browser using the excellent OpenSheetMu-

sicDisplay (OSMD)3 JavaScript library. MusicXML is by no means the only way to represent sheet
music on a computer, but the fact that it is commonly exported by most score-writers makes it
attractive for our use-case. For a discussion of other approaches to rendering symbolic music, see
Appendix A.

3.2.2 Conveniently edit fingerings and persist them to the database

Since OSMD does not at this time support direct modification of a MusicXML document with-
out re-rendering the entire page, this requires working directly on the generated Scalable Vector

3https://opensheetmusicdisplay.org/

15

https://opensheetmusicdisplay.org/

3.2. USER INTERFACE

Graphic (SVG). We provide four basic operations.

1. Select a note (arrow keys or the mouse)

2. Enter a finger (number keys)

3. Enter a string (shifted number keys)

4. Remove annotations (backspace)

As re-calculating note positions after the addition or removal of a fingering would duplicate
OSMD’s rendering algorithm, we instead force it to draw the note positions as if every note al-
ready had a finger and string annotated simply by adding dummy fingerings and strings to the
MusicXML where there are absent and hiding the corresponding nodes in the SVG. Fortunately,
the SVG and MusicXML note node orderings are identical except for grace notes, so calculating
this correspondence is straightforward.4 After this transformation, we call the OSMD renderer to
produce the SVG and collect all notehead, fingering, and string lyric nodes. Mutable references
to these SVG elements are then updated in response to the user navigating between noteheads
and changing fingering annotations via the arrow and number keys, respectively. Changes are
immediately persisted to the MusicXML document as the user enters them so that they are not
lost in the event of a re-render, which can happen if the browser window is resized during the
session. Uploading a fingering once it is entered happens when the user presses the “Upload”
button.

3.2.3 Query the server for an inferred fingering, respecting any entries made by the
user

The user’s main interaction with this element is adjusting the penalty weights to suit their pref-
erences. This is accomplished by presenting a group of sliders labeled with a particular weight,
such as “shift aversion” or “string crossing aversion”. The benefit of sliders over a number entry
field is that the weight range can be restricted to an interval that is known to output reasonable
fingerings. Clicking “Infer fingerings” sends the chosen weights and MusicXML to the server,
which responds with a copy of the MusicXML with every note annotated.

4Early versions of OSMD did not support drawing string numbers, so we used to add them in as lyrics, but this has
since been fixed upstream. See the corresponding issue and pull request

16

https://github.com/opensheetmusicdisplay/opensheetmusicdisplay/issues/949
https://github.com/opensheetmusicdisplay/opensheetmusicdisplay/pull/957

3.3. FINGERING INFERENCE

Figure 3.2: A snapshot of the fingering editor. The blue notehead is currently selected.

3.3 Fingering inference

Since our sheet music is represented by an XML document, the interesting part of inferring a
fingering annotation boils down to a pure function of this form:

1 -- `Document ` is the type of an XML document
2 inferFingerings :: Document -> Document
3 inferFingerings = ...

We could construct a Haskell datatype to represent aMusicXML document, but with 364 elements,
276 attributes, 179 complex types, and 116 simple types — only a fraction of which are relative

17

3.3. FINGERING INFERENCE

to sheet music involving one string instrument — parsing and validating the MusicXML schema5

would be prohibitively time consuming and error-prone. Instead, we operate directly on the
Document type, as provided by the xml-conduit6 library.

The first order of business is to reify the possibly multiple voices present in a passage into
a single voice containing chords at each “timestep”, where a timestep is the shortest duration
note appearing in the passage. For example, the following passage from the first movement of
Prokofiev’s first violin concerto, (rehearsal 19-20), originally written as in figure 3.3a, is trans-
formed into the setting in figure 3.3b (see Appendix B.1 for details).

(a) Passage written in two voices

(b) Passage re-written in one voice

Figure 3.3: Transformation of multiple voices into a single voice

Having thus “gridded” the passage, we have further reduced the problem of fingering infer-
ence to a function of type

1 type UnassignedStep = Step Set
2 type AssignedStep = Step Identity
3 infer :: [UnassignedStep] -> [AssignedStep]
4 infer = ...

If we take Sayegh’s (S. I. Sayegh & Tenorio, 1989) assertion that fingering is aMarkov process, i.e.
that the fingering for a given time step is, given the immediately preceeding time step, indepen-

5https://usermanuals.musicxml.com/MusicXML/Content/XS-MusicXML.htm
6https://hackage.haskell.org/package/xml-conduit

18

https://usermanuals.musicxml.com/MusicXML/Content/XS-MusicXML.htm
https://hackage.haskell.org/package/xml-conduit

3.3. FINGERING INFERENCE

dent of all previous fingerings, then this is equivalent to choosing a path from t0 to tn over the
graph of the form in figure 3.4 where each vertex corresponds to a choice of fingering and each
vertical group corresponds to a single TimeStep.

Figure 3.4: A graphical representation of the fingering inference problem

At this point, one would typically “learn” weight assignments for the graph edges by pro-
viding Viterbi’s algorithm (Forney, 1973) with a corpus of fingered passages, in a similar manner
to (S. I. Sayegh & Tenorio, 1989). However, to the best of my knowledge, there is no collection
of violin fingering data already in MusicXML form, and in the absence of reliable Optical Music
Recognition, transcribing existing editions by hand would be the labor of several decades. More-
over, fingering choices of many of the pedagogues responsible for creating well-known editions
differ greatly, so feeding those fingerings to a learning algorithm would produce confusing re-
sults. Instead, we construct cost functions manually by codifying agreed-upon rules for shifts
and string crossings and allow users to adjust the degree to which each cost function affects the
inferred fingering.

Under the Markov assumption, we can only consider two classes of penalty functions: ones

19

3.3. FINGERING INFERENCE

that take a either a single AssignedStep or two adjacent AssignedSteps into account.

1 data Penalty step cost = P
2 { _pName :: Text -- assign a name for display purposes
3 , _pCost :: step -> cost -- fixed
4 , _pWeight :: cost -- adjustable by user
5 }
6

7 type Penalty1 = Penalty AssignedStep
8

9 type Penalty2 = Penalty (AssignedStep , AssignedStep)

Objects of type Penalty1 are not particularly interesting. They generally reflect mechanical
impossibilities when executing certain chords. For example, all chordsmust be played on adjacent
strings,7 so the corresponding penalty is

1 chordAdjacent :: Num a => Penalty1 a
2 chordAdjacent = P "chords on adjacent strings" cost high
3 where
4 cost step =
5 case sort (getStrings step) of
6 [] -> 0 -- rest
7 [_] -> 0
8 [G, D] -> 0
9 [D, A] -> 0

10 [A, E] -> 0
11 [G, D, A] -> 0
12 [D, A, E] -> 0
13 [G, D, A, E] -> 0
14 _ -> infinity

We can also penalize the use of the fourth finger, something recommended to many beginners.

1 fourthFinger :: Num a => Penalty1 a
2 fourthFinger = P "fourth finger" cost 0 -- initialize the weight to 0
3 where
4 cost (Step (Single n) _) = if (getFinger n == Four) then 1 else 0
5 cost _ = 0

An example of a Penalty2 is the check for a half-step shift with one finger. In my own playing,
7actually artificial harmonics would be classified as double stops under our gridding scheme, but we ignore them

for simplicity here

20

3.3. FINGERING INFERENCE

I employ this technique often, so I assign it a negative weight to bias inference towards using it.
However, this is only an initial suggestion, and it is easily adjustable in the UI.

1 oneFingerHalfStep :: Num a => Penalty2 a
2 oneFingerHalfStep = P "one finger half step shift" cost (- medium)
3 where
4 cost (Step (Single n1) _, Step (Single n2) _) =
5 if _m2 n1 n2
6 && getFinger n1 == getFinger n2
7 && getString n1 == getString n2
8 then 1 else 0
9 cost _ = 0

Given a list of these penalties (see Appendix B.2 for the full list), we calculate the edge weights
by summing the cost of each individual penalty. Then, we retrieve the fingering assignment
indicated by the shortest path through the graph.

1 p1s :: [Penalty1]
2 p1s = [chordAdjacent , staticThird , ...]
3

4 p2s :: [Penalty2]
5 p2s = [oneFingerHalfStep , ...]
6

7 cost :: AssignedStep -> AssignedStep -> Double
8 cost s1 s2 = sum (map p1Cost p1s) + sum (map p2Cost p2s)
9 where

10 p1Cost p = ((p.pCost) s1 + (p.pCost) s2) * p.pWeight
11 p2Cost p = (p.pCost) (s1, s2) * p.pWeight

The graph is acyclic and nodes are ordered chronologically by the time steps during which
their corresponding notes are sounded. Thus, the shortest path can be calculated in O(V + E)

using the DAG-SHORTEST-PATHS algorithm described in Cormen et al., 2003/2009, Chapter 6, Sec-
tion 24.2, with the added benefit that the natural chronological ordering of nodes means that the
graph is already topologically sorted. We codify this assumption at the type level by represent-
ing our graph as a list of non-empty states ([NonEmpty State]), where each NonEmpty state
represents the possible states (fingerings) for a single time step. The algorithm in Cormen et al.,
2003/2009 relies heavily on mutation to update costs as more of the graph is searched, which
we accomplish in Haskell by transforming the list of NonEmpty state into a mutable array and
mutating it in place locally using the ST monad (Launchbury & Peyton Jones, 1998). It also as-
sumes a “single source,” whereas there are potentially many possible fingerings for the first note

21

3.3. FINGERING INFERENCE

in the passage. To get around this limitation, we run the single source algorithm for each of the
candidate fingerings for the first timestep and pick the one with the lowest cost.

1 import qualified Data.Vector as V
2 import qualified Data.Vector.Mutable as VM
3

4 -- Introduction to Algorithms , Chapter 6 (Cormen, Leiserson , Rivest, Stein)
5 --
6

7 -- G ~ [NonEmpty (GraphNode state a)]
8 data GraphNode state a = Node
9 { vertex :: state

10 , dist :: a
11 , staticCost :: a
12 , previous :: Maybe (GraphNode state a)
13 }
14 deriving (Show, Eq, Ord)
15

16 getPath :: (Ord a, Num a) =>
17 Vector (NonEmpty (GraphNode state a)) -> (a, [state])
18 getPath vec =
19 let end = minimumBy (compare `on` dist) (V.last vec)
20 in (dist end, reverse (vertex end : go (previous end)))
21 where
22 go Nothing = []
23 go (Just p) = vertex p : go (previous p)
24

25 -- INITIALIZE -SINGLE-SOURCE(G, s):
26 -- for each vertex v in G.V
27 -- v.d = ∞
28 -- v�. = NIL
29 -- s.d = 0
30 initialize :: (Show state, Num a, Ord a) =>
31 [NonEmpty state] -> (state -> a) -> [NonEmpty (GraphNode state a)]
32 initialize graph singleCost = map (pruneVertices . fmap mkNode) graph
33 where
34 mkNode f = Node f infinity (singleCost f) Nothing
35 pruneVertices (s :| ss) =
36 case filter (\node -> staticCost node < infinity) (s : ss) of
37 [] -> error "No possible fingering for note"
38 (s' : ss') -> s' :| ss'
39

22

3.3. FINGERING INFERENCE

40 -- DAG-Shortest-Paths(G, w, s):
41 -- INITIALIZE -SINGLE-SOURCE(G)
42 -- for each vertex u, taken in topologically sorted order
43 -- for each vertex v in G.adj(u)
44 -- RELAX(u,v,w)
45 shortestPath :: forall state a. (Ord state, Num a, Ord a, Show state) =>
46 [NonEmpty state] -> (state -> a) -> (state -> state -> a) -> (a, [state])
47 shortestPath [] _ _ = (0, [])
48 shortestPath (fs : rest) singleCost transitionCost =
49 minimumBy (compare `on` fst) (fmap mkGraph fs)
50 where
51 mkGraph f =
52 let graph = V.fromList $ (Node f 0 (singleCost f) Nothing :| []) :
53 initialize rest singleCost
54 in getPath $ V.modify go graph
55

56 -- RELAX(u, v, w):
57 -- if v.d > u.d + w(u,v)
58 -- v.d = u.d + w(u,v)
59 -- v�. = u
60 relax u v =
61 -- add the static cost of the next node when calculating the new distance
62 let dist' = dist u + transitionCost (vertex u) (vertex v) + staticCost v
63 in if dist' < (dist v) then v {dist = dist', previous = Just u} else v
64

65 go :: forall s. VM.MVector s (NonEmpty (GraphNode state a)) -> ST s ()
66 go g = forM_ [1 .. VM.length g - 1] \i -> do
67 prev <- VM.read g (i - 1)
68 forM_ prev \u -> VM.modify g (fmap (relax u)) i

Given a corpus of fingered passages, we can reverse this process to infer weights by running
stochastic gradient descent to minimize the objective

PathCost(passage) + λ
∑

w∈weights
w2

where the PathCost is the sum of costs between all pairs of adjacent steps. The second term,
λ
∑

w2, biases the weights towards 0 to be more “neutral.” This corresponds to the notion that
well-rounded violinists tend not to prefer a single type of shift to the exclusion of all others and
makes the problem more numerically tractable. Currently, there is not enough data to reliably set

23

3.4. EVALUATION

the hyper-parameter, λ, so we just leave it at 1.

3.4 Evaluation

The most valuable metric in assessing the quality of generated fingerings is the opinions of the
violinists we expect to use them in performance. To this end, we present a group of survey
respondents with several fingered passages and ask them to answer the following questions on a
5-point Likert scale (Preedy & Watson, 2010). Results of the survey are found in Section 4.2.

• How comfortable do you find this fingering to play?

• How expressive do you find this fingering allows a violinist to be?

• How idiomatic do you find this fingering?

• Would you say this fingering was generated by a human or by a computer?

Of the presented passages, half have fingerings generated by a human (me), and half have
fingerings generated by the method presented above.

24

Chapter 4

Results

4.1 Fingering samples

4.1.1 Generated fingerings

The first bar and a half of the Prokofiev (Figure 4.1) is extremely promising, as it is identical to
what I use in practice and has been recommended to me by teachers. However, the last two bars
are somewhat awkward; measure 103 uses repeated 4-2 instead of 3-1 and measure 104 shifts back
and forth between first and third positions whereas a more comfortable solution would be to just
stay in third position at the expense of an extra string crossing. Several free responses in the user
survey confirm this analysis. The Bartók (Figure 4.2) is certainly playable, but the 4-2 shifts are
undesirable and the passage would be made easier by using the open E-string for the written F-
flat. Unfortunately, the Ysaÿe (Figure 4.3), aptly described by one of the respondents, “is a mess.”
Ironically, given the name of this project, the primary failing seems to be that the algorithmmakes
the incorrect assumption that using any finger after an open string is equally acceptable. While
it is true that using open strings to mask a necessary shift can be very convenient at times, the
algorithm has abused this fact to such an extreme as to render the generated fingering for the
Ysaÿe unusable.

4.1.2 Control group fingerings

We include familiar excerpts by Richard Strauss (Figure 4.4), Bruch (Figure 4.5), andMozart (Figure
4.6) as a control group representing human-generated fingerings. Of course, these examples are
idiosyncratic and represent my opinions and preferences, but they have the desirable property of

25

4.2. USER RESPONSES

3

IV

1

IV

4

IV

2

IV

4

IV

2

IV

3

III

1

III

4

III

2

III

3

III

2

III

4
III

2
III3

II

1
II 3

II

1
II 3

II

1
II 3

II

1
II 4

II

0
I 1

I

0
I 4

I

2
I 4

I

2
I 4

I

2
I101

4
I

2
I 4

I

2
I 4

I

2
I 4

I

2
I 4

I

3
I
3
I

1
I 3

I

1
I
1
I

2
II 4

II

1
II
1
II

1
II 4

II

1
II
1
II

3
III

4

III

2

III

2

III

1

IV

3

IV

1

IV

0

IV

103

Figure 4.1: Prokofiev: Violin Concerto No.2, Op.63, I. Allegro moderato mm. 101-104

2
II
3
II
4
II

1
I

2
I

3
I

4
I

3
I

2
I

1
I

4
II

3
II

2
II

1
II

4
III

3

III

2

III

1

III

1

III

2

III

3

III

4
III

1
II

2
II

3
II
4
II

1
I185 187

2
I

3
I

4
I

2
I

3
I

4
I

3
I

4
I

3
I

2
I

1
I

4
II

3
II

2
II

1
II

4
III

3
III

2
III

188

Figure 4.2: Bartók: Violin Concerto No. 2, III. Allegro molto mm. 185-189

having been used by at least one violinist in an actual performance.

4.2 User responses

Responses to the questions in 3.4 are tabulated in Figures 4.7, 4.8, 4.9, and 4.10. Each column
represents a passage and each row, a gradation on the Likert scale. The number of dots indicates
the number of responses in that category.

The responses mostly agree with the analysis above. In every metric, the Bartók (Figure 4.2)
had the most positive responses, followed closely by the Prokofiev (Figure 4.1), although if we
excluded the last two measures of the Prokofiev, the positions would probably have been re-
versed. Additionally, the Bartók succeeded in passing for human-generated, with all violinists
answering “Unsure” or “Probably a human” when asked who made the fingering. Though the
excerpt involves mostly step-wise motion, this is still an important milestone in demonstrating
the potential effectiveness of the algorithm.

26

4.3. COMPARISON WITH PRIOR WORK

0

IV

2

III

1

II

0

I

1

I

0

I

2

II

1

III

0

IV

2

III

1

II

0

I

2
I

0
I 2

I

1
II4

II

0
II2

II

1
III 4

III

0

III

3

III

1

III

0

IV

1

III

4

III

2

II

4
I

2
II

0
II

2
IV

0
IV
1
III

2
II3

I
76 78

0 IV

2 III

4 II

3 I

1
II

0
II

2
IV

0

IV

2

IV

2

III

3

II

4
I

1
I

2
I

0
I 4

II

1
II
2
II

0
II4

III

1

III

2

III

0

III

4

IV

1

IV

2

IV

0

IV

1
IV

3
III1

II 1
I

2
I

1
I

3
II

2
III

1
IV
3
III1

II3
I

79 81

1 IV

2 III

3 II
1 I

3 I2
I
1
I

0
I
3
II

2
II
1
II

0
II
4

III

3

III

1

III

3

IV

1 IV

3 III
1 II

0 I
2 I

0
I

1
II

2
I
1
I

0
I

1
II

1
III
2
III1

II0
I 3

I82

1 IV

2 III

3 II
2 I

4 I
3
II

1
II 3

I

1
I

1
II
2
II
0
I
1
II3

II
1
I3

I

2 IV
1 III

3 III
2 II

4 I
4
II

2
II3

I
2
I

0
I

1
II

3
I
2
I

1
II
1
II4

II84

1
I

4
II

2
II

3
II

1

II

0

II

1

III

2

III

1

III

0

III

2

IV

1

IV

1

IV

0

III

1

III

0

III

1

IV

0

III

1

III

0

III

1

IV

0

III

4

IV

2

IV
86

Figure 4.3: Ysaÿe: Solo Sonata No. 3, Op. 27 “Ballade” mm. 76-87

4.3 Comparison with prior work

Nagata et al., 2014 demonstrate their inference algorithm for a simple passage, producing both a
beginner (4.11a) and an advanced (4.11b) fingering. Without altering the default weight setting,
our algorithm produces the result in 4.11c. Starting measure 5 with the second finger is a poor
choice, brought on by the same defect of no position memory across rests or open strings that
plagued the Ysaÿe excerpt, but for the other notes, the OpenStrings fingering out-performs the
advanced one inferred by Nagata et al., 2014. Shifting to third position on the downbeat of mea-
sure 6 is more natural than shifting in the middle of the bar and, using the open string to shift
to first position in measure 7 is much cleaner than the awkward 4-3 downward slide. Adjusting
the weights to favor beginner tendencies produces the result in Figure 4.11d. For a novice, our

27

4.3. COMPARISON WITH PRIOR WORK

1

2

II

I
4
I

4
I

1
I
2
I

2
II 3

I

1

III

2

III

0

III

2

III

3

III

1

III

3
II

4
II

1
II 3

II
4
II

1
II 2

I
3
I

1
I31 33

2

II

2

III

1

III

1
III 3

II 1
II 4

II

3
III

2
III

3
III 1

II 4
II 2

I

1
II

1
II
2
II 1

I 3
I 4

I

3
II

2
II
3
II 1

I 3
I 1

I 2
I 3

I

34

36

Figure 4.4: Strauss: Don Juan, Op. 20 mm. 31-36

3

IV

1

IV

2

IV

1

IV

2

IV

2

IV

2

IV

1

IV

2

IV

3

IV

3

4

III

II
1
II

3
1

III
II3
1

III
II
4
2

IV
III
3
1

IV
III
3
1

IV
III

3
1

IV
III
0
3

III
IV

0

1

IV

III
2
2

IV
III

66 68 70

3
1

IV
III4
2

IV
III
3
1

IV
III
3
1

IV
III4
2

IV
III3
1

IV
III
3
1

IV
III
3
1

IV
III4

2
IV
III

0

1

IV

III
3
2

III
II3
1

II
I 3

1
II
I4
2

II
I
3
1

II
I
3
1

II
I4
2

II
I3
1

II
I
3
1

II
I
3
1

II
I 3
1

II
I

2

3

III

II
3
I

1
I71 73

2
I 1

I
2
I
2
I
2
I
1
I
2
I

3
I

1
I

2
I

3
I
2
I
1
I

4
2

III
II
3
1

III
II
3
1

III
II

3
1

III
II
0
3

II
III
2
1

III
II0
4

II
III 3

1
III
II4
2

III
II
3
1

III
II

3
1

III
II4
2

III
II3
1

III
II
3
1

III
II
0
4

II
I

75 77
79

3
1

III
II

0

1

III

II

1
I

2
I

3
I

4
I
3
I
2
I
3
I 4

I

3
I

2
I

3
I

80 82

Figure 4.5: Bruch: Scottish Fantasy, Op. 46, I. Introduction mm. 66-82

fingering is not as good as 4.11a, which fastidiously avoids shifting of any kind and makes only
minimal use of the left pinkie. In principle, we could add weights specifically penalizing second
position and biasing inference towards something like Nagata et al., 2014’s beginner result, but
that has yet to be implemented.

Maezawa et al., 2012, estimating fingerings for Romanze in C, with the aid of a Joachim record-
ing, obtained the fingering in Figure 4.12a. For the same passage, we obtain the result in Figure
4.12b. The authors speculate “that the actual fingering [in the Joachim recording] may have been
very different from that estimated by [their] method.” This is true. Joachim would not have em-
ployed Maezawa et al., 2012’s fingering in practice. The shifts are awkward and it is difficult to
play in tune and with good tone on the highest part of the D string for an extended period. While
the OpenStrings algorithm’s fingering also has questionable shifts, it always succeeds in picking
the range of the instrument that most human violinists would use.

28

4.3. COMPARISON WITH PRIOR WORK

2 I 1 I 1
I

1
I
1
I

1
I

1
I 3

I 4
I

3
I

1
I 3

I 4
I

3
I

1
I 3

I 4
I

3
I

1
I

1
I

1
I

2
I

3
I

2
I

1
I42 44 46

2
I

1
I
2
I

1
I
1
I

1
I
2
I

1
I

2
I
3
I
4
I

2
I

1
I
2
I
3
I

1
I

2
I
3
I
4
I

2
I

1
I
2
I
3
I

1
I

2
I

1
I
2
I

1
I 4

I

1
I
3
I

1
I

1
I
2
I
2
I
2
I

0
I
4
II

2
II

47 49

2
II

3
II

3
II

1
II 3

II 2
I 4

I
4 I 3 I2

I

1
I
2
I
1
I
2
I
3
I
4
I

3
I

2
I

1
I
2
I
1
I
2
I
3
I

4
I

3
I

2
I

1
I
2
I
1
I
2
I
3
I
4
I

2
I 4

I

2
I

51
53

4
I

2
I

4
I

1
I 4

I

1
I

3
II

1
II

1
II

2
II

1
II

54 56

Figure 4.6: Mozart: Violin Concerto No. 4, K. 218, I. Allegro mm. 42-56

Figure 4.7: How comfortable do you find this fingering to play?

29

4.3. COMPARISON WITH PRIOR WORK

Figure 4.8: How expressive do you find this fingering allows a violinist to be?

Figure 4.9: How idiomatic do you find this fingering?

30

4.3. COMPARISON WITH PRIOR WORK

Figure 4.10: Would you say this fingering was generated by a human or by a computer?

0
I

1
I

2
I

3
II

0
I 3

I
3
I

0
II

1
II

2
II

3
II

4
II

3
II 2

I
2
I

3
III

0
II

1
II

2
II

3
II

2
II

p
cresc.

pp
cresc.

pp

3 5 7

(a) Beginner fingering inferred by Nagata et al., 2014

2
II

3
II

4
II

1
II

2
II 4

II
4
II

0
II

1
II

2
II

3
II

2
II

1
II 4

II
4
II

3
III

0
II

1
II

2
II

3
II

2
II

p
cresc.

pp
cresc.

pp

3 5 7

(b) Advanced fingering inferred by Nagata et al., 2014

2
II

3
II

4
II

1
II

2
II 2

II
2
II

0
II

1
II

2
II

1
II

2
II

1
II 4

II
4
II

1
III

0
II

1
II

2
II

3
II

2
II

p
cresc.

pp
cresc.

pp

3 5 7

(c) Default fingering inferred by OpenStrings

0
I

3
II

4
II

1
II

2
II 2

II
2
II

0
II

1
II

2
II

3
II

4
II

3
II 2

II
2
II

3
III

4
III

1
II

2
II

3
II

2
II

p
cresc.

pp
cresc.

pp

3 5 7

(d) Beginner fingering inferred by OpenStrings

Figure 4.11: Comparison of OpenStrings and prior work by Nagata et al.

31

4.3. COMPARISON WITH PRIOR WORK

0
I 2

I
1
I

0

II

1

II

2
II
3
II
0
I

3
II

0
I

0
I 2

I
4
II

0

II

1

II

2
II
3
II
2
II
1
II
2
II 4

II
0
I

2
II

3
II3 5 7

0
I 2

I
1
I

2
II
1
II

1
II0

I 1
II2

II 4
II

1
I

4
III

3
III

2
II
1
II 2

I
1
I

0
I 2

I
4
II

2
II
3
II9 11

13
15

0
I
0
I
4
II
0
I

3
II
0
I 2

I
1
I
0
I
1
I

0
II
1
II
2
II
3
II

0
I

0
I

0
I

0
I 1

I
3
II

2

III

3

III

4
III

1
II
0
I

3
II

3
II17 19 21 23

0
I

1
II

2
II

1
II
2
II
3
II

2
II

1
II4

III
3
III

1
II

2
III3

III4
III3

II
3
II

3
II

3
II
1
II
4
III
3
III

3
III
2
III
3
III
2
III25 27

29

31

2
III

3
III

4
III

1
II

1
II
0
I
1
I

2
II

4
III

2
II
0
I
3
II
0
I

2
II

1
II
2
II
3
II 1

I
0
I
3
II
2
II
1
II 4

II
3
III

4
IV

33 35 37 39

3
II

1
I

1
I 2

I
4
II

2
II

0
I

1
I
0
I
1
I
2
I
3
II
4
III

3
IV

4
IV 3

III
4
III

2
II

4
III

2
II

1
III

2
II

3
III

40 42 44

2
III
3
III
4
III2

II
1
II
4
III
3
III
2
III

2
III
3
III
4
III2

II
1
II
4
III
3
III
2
III

1
III
2
III
3
III
4
III
3
III
4
III

1
II

2
II

1
II

2
II
3
II
4
II
3
II

4
II
3
II
4
II46 48

1
I

0
I

3
II

2
II

3
II

2
II

1
II

0
II

50

(a) Fingering estimated by Maezawa et al., 2012

0
I 2

I
1
I

0

II

1

II

2
II
1
II
2
II

1
II

2
II

2
II 4

II
3
II

0

II

1

II

2
II
3
II
2
II
1
II
2
II 3

II
2
II

1
II

2
II3 5 7

3
II 2

II
1
II

2
II
1
II

1
II0

I 1
I 3

I 2
I

1
I

4
I

3
I

1
I
0
I 3

I
1
I

0
I 1

I
4
II

1
II
2
II9 11

13
15

3
II
3
II
4
II
3
II

2
II
2
II 4

II
3
II
2
II
3
II

0
II
1
II
2
II
1
II

2
II

2
II

2
II

2
II 4

II
3
II

0

II

1

II

2
II
3
II
4
II

3
II

3
II17 19 21 23

4
II

1
I
2
I

1
I
2
I
3
I

2
I

1
I 3

I
2
I

1
I

1
I 3

I 1
I 4

I
4
I

4
I

4
I
2
I
4
I
3
I

4
I
3
I
4
I
2
I25 27

29

31

2
I

1
I
2
I

3
II

4
II
3
II
4
II

2
II

1
II

2
II
3
II
2
II
3
II

1
II

1
II
2
II
1
II 3

II
2
II
1
II
2
II
1
II 4

II
2
II
1
II

33 35 37 39

4
I

3
I

1
I 3

I
1
II

1
II

2
II

3
II

2
II
3
II
4
II
3
II
2
II

1
II

0
I 1

I
2
I
3
I
2
I
3
I
2
I
3
I

3
I

40 42 44

2
I
3
I
4
I 3

I
2
I
4
I
3
I
2
I

2
I
3
I
4
I 3

I
2
I
4
I
3
I
2
I

1
I
2
I
3
I
4
I
3
I
2
I

1
I

2
I

1
I

2
I
3
I
4
I
3
I

2
I
1
I
0
I46 48

1
I

4
II

3
II

2
II

3
II

2
II

1
II

0
II

50

(b) Fingering inferred by OpenStrings

Figure 4.12: Comparison of OpenStrings and prior work by Maezawa et al.
32

Chapter 5

Conclusion

5.1 Discussion

OpenStrings narrows the gap between previous attempts at automated fingering selection and
what humans are capable of producing, but by no means closes it. For simple enough passages,
experienced violinists are comfortable with the fingerings assigned by the algorithm, but as mu-
sical complexity increases, results degrade. Could more complicated passages be handled better
with the addition of more fine-grained rules under the current system (with some improvements
discussed below in 5.2.1), or is there no amount of manually written rules that can approach the
human intuition involved in choosing fingerings? Perhaps, given enough data, a deep neural net-
work could work out the rules better than I could translate my understanding of them into code.
Indeed, in fields with enough samples to train on, deep learning has obliterated classical AI expert
systems like this one. However, though we could imagine a neural network eventually generating
better fingerings than OpenStrings, its inner workings, like those of most deep learning models,
would be a black box. The advantage of manual feature extraction is in its easy inspection and
comprehension by violinists, who, though they may not be programmers, are capable of under-
standing the process of setting costs on semantically meaningful transitions.

5.2 Future work

5.2.1 Longer term memory

The biggest flaw in the inference procedure is that it “forgets” hand position between notes. In-
stead ofweakening theMarkov assumption that each fingering depends only on the one preceding

33

5.2. FUTURE WORK

it, we should generalize the notion of fingering to include the whole hand, as opposed to the fin-
gers pressing on the string. This will allow the algorithm to “remember” what position it was in
while playing an open string so that it doesn’t shift afterwards without good reason. Additionally,
this could permit some version of conservation of momentum to be introduced, penalizing rapid
shifts back and forth more heavily than a series of shifts in the same direction.

5.2.2 User interface improvements

Instead of inferring the single best fingering for a particular weight setting, we can infer the
k best fingerings, as it is still a computationally tractable problem at O(|E| + k|V |) (Eppstein,
1997). This would be a marked improvement to the user interface, as it would allow users to see
several fingerings at a time, instead of waiting for the algorithm to finish running after a weight
adjustment. On a related note, the runtime performance of the inference, although algorithmically
optimal, leaves much to be desired, taking up to 30 seconds to decide fingerings for a passage of
10 bars. Possible solutions include

• implementing sub-selection in the UI, i.e. constraining inference to run on a contiguous
subset of the passage without having to manually upload a new XML file

• more aggressively pruning the fingering graph to remove poor transitions

• caching often used information about XML nodes like pitch to reduce the runtime of the
inner loop (the need for this has not yet been verified by profiling)

• relaxing the requirement of finding the optimal path through the fingering graph in favor
of finding a heuristically “good” one faster

The current flow for uploading a new piece of music requires the use of an external score writer
for initial typesetting. This has the advantage of delegating the difficult task of engraving music
to a specialized program, but can be rather inconvenient when uploading many short passages. It
may be expedient to implement a basic sheet music editor inside of the user interface that outputs
MusicXML so that the entire flow could be accomplished inside one program.

5.2.3 Fingering data collection

Another area for improvement is the lack of fingering data on which to run standard machine
learning procedures. Barring large advances in Optical Music Recognition, the problem becomes

34

5.2. FUTURE WORK

a social one, in that the only way forward is for people to spend time typing out passages and
uploading them to OpenStrings. To incentivize users to commit their efforts to this task, we could
construct a bounty system for uploads. User A would pledge n currency to whoever typesets
measures 200-300 of, say, the Tchaikovsky Violin Concerto, and then user B, upon uploading the
XML, would receive the n currency towards placing their own future bounties. Users would be
able to purchase this currency with real dollars, which would go towards maintaining the servers
and administering the website.

5.2.4 Extensibility

With the current design of OpenStrings, if a user wants to add a rule to the inference engine, they
can open a pull request and wait for it to be merged and deployed. This process is accessible to
everyone, but the feedback time between writing a rule and seeing it in action on a passage is
untenably long for anyone not running a copy of the website locally. Instead, we could bake only
a few core rules into the engine at compile time and read the rest at runtime, thereby giving all
users the same level of control over the inference process as the author. There are very few pieces
of end user software that allow for programmatic extensibility at runtime, a notable exception
being emacs (Yegge, 2007). Allowing for users to upload code to run on one’s server is especially
dangerous. However, for our purposes, we need only allow for users to upload Haskell functions
of types Penalty1 or Penalty2. Haskell’s purity makes it very easy to audit, and there is already
literature on running untrusted Haskell code in an application (see Pang et al., 2004), so the task
of adding extensibility seems feasible.

35

Appendix A

Computer Representations of Symbolic
Music

When designing an automated system to aid working musicians in preparing fingerings for prac-
tice and performance, it is very important to consider the underlying representation of themusical
data. Sheet music has evolved into an incredibly information dense format over the past 700 years
and computers still struggle to properly represent its complexity and nuance.

Perhaps the most common representation format for computer music is MIDI, a protocol de-
signed for the transition of musical information between synthesizers (of Musical Electronics
Industry AMEI & MMA, 2020). It encodes information about pitch, note onset and offset times,
and note velocities. The format is extremely widespread, but it is more optimized for synthe-
sized performance than for symbolic analysis, although there is a piano fingering dataset that
stores fingerings with midi-like note onset and velocity information, along with accompanying
human-readable PDFs for each fingered piece (Nakamura et al., 2019).

Aside from MIDI, there are several other contending formats for symbolic music storage. The
three most prevalent are MusicXML (Good, 2009) , Music Encoding Initiative (MEI) (Crawford &
Lewis, 2016) , and Lilypond (Lilypond, 2019). Other, less established formats include Score (Sapp,
2015), Humdrum (Huron, 2002), Guido (Daudin et al., 2009), andMuseData. We omit discussion of
these formats because they are relatively unpopular and have been subsumed by the other, more
modern representations. For a more in depth analysis of the vast landscape of computer music
formats, see Selfridge-Field, 1997.

Most musicians are probably most familiar with MusicXML out of all non-MIDI formats. Mu-
sicXML is the lingua franca of scorewriting software, serving as the interchange format between

36

programs such as Finale and Sibelius. It embeds music into a hierarchical XML document contain-
ing both raw musical information, such as pitch and rhythm, as well as score layout information
so that the rendered output looks the same between different pieces of software. One of its chief
advantages is its ubiquity and that it can be rendered both locally on a user’s desktop if they own
a scorewriting application or in the browser with OpenSheetMusicDisplay, as we do for Open-
Strings.

MEI is very similar to MusicXML, except that its intended use is as a musicology tool rather
than an interchange format. Unlike MusicXML, it is a purely semantic format with the ability to
represent editorial information and discrepancies between various editions in a single document
within the XML schema. The format embeds no rendering information but can be viewed online
using Verovio.1 The fact that it contains only musical information rather than conflating music
with rendering concerns is appealing, but because it is not as widespread as MusicXML, there are
fewer options for interoperability between programs.

Lilypond is very different from MEI and MusicXML, as it is the only format intended to be
written and read by humans. It’s main focus is on producing the best possible publication quality
score output, which it does very well. Writing music in Lilypond is very similar to writing math-
ematics in LATEX. This is both an advantage and a disadvantage of the format, as with practice,
one can become very proficient at transcribing music quickly into Lilypond, but the novelty fac-
tor of writing plain text makes it difficult to learn initially, especially for most musicians used to
entering music into scorewriters with the mouse. There is some work converting a limited subset
of Lilypond to MEI so that it can be rendered in the browser using Verovio as well (Liska et al.,
2015). Although music can be converted between all three of these formats as well as Humdrum
and Score, the conversion is never lossless (Nápoles López et al., 2019), so it is advisable to pick a
single format to store fingerings in order to maintain the semantic integrity of the data.

1https://www.verovio.org/index.xhtml

37

https://www.verovio.org/index.xhtml

Appendix B

Selected code samples

All of the code for the latest version of OpenStrings can be found online at https://github.com/
jmorag/open-strings.

B.1 Merge multiple voices into time steps

In order to merge multiple voices into a single line as in the transformation from figure 3.3a to
figure 3.3b, we group MusicXML note elements into single notes, double/triple/quadruple-stops,
or rests.

1 -- the type variable `f` parametrizes if a note has many fingerings
2 -- (undecided) or just one (decided)
3 data Note f = Note {_xmlRef :: XmlRef, _fingerings :: f Fingering}
4 data TimeStep f
5 = Single (Note f)
6 | DoubleStop (Note f) (Note f)
7 | TripleStop (Note f) (Note f) (Note f)
8 | QuadrupleStop (Note f) (Note f) (Note f) (Note f)
9 | Rest

10 deriving (Show, Eq)

Given a list of relevant xml elements, we calculate the total duration of the passage by summing
the duration attributes, create an empty Vector of rests, and then traverse the element list while
keeping track of our position in the vector. Themechanism by which we perform vector mutation
efficiently in a pure language using the ST monad is described in (Launchbury & Peyton Jones,
1998).

38

https://github.com/jmorag/open-strings
https://github.com/jmorag/open-strings

B.1. MERGE MULTIPLE VOICES INTO TIME STEPS

1 readTimeSteps :: [Element] -> Vector (TimeStep Set)
2 readTimeSteps es = V.create do
3 vec <- VM.replicate (totalDuration es) Rest
4 foldM_ (readTimeStep vec) 0 (zip [0 ..] es)
5 pure vec
6

7 readTimeStep :: VM.MVector s (TimeStep Set) -> Int -> Element -> ST s Int
8 readTimeStep vec t ref =
9 case e ^?! name of

10 "note" -> do
11 let t' = maybe t (const (t - xmlDuration)) (e ^? deep (el "chord"))
12 forM_ [t' .. t' + xmlDuration - 1] $
13 VM.modify vec (maybe Rest Single (mkNote ref) <>)
14 pure (t' + xmlDuration)
15 "backup" -> pure (t - xmlDuration)
16 "forward" -> pure (t + xmlDuration)
17 n -> error $ "Impossible timestep element " <> show n
18 where
19 e = deref ref
20 xmlDuration = e ^?! dur

The mkNote :: Element -> Maybe (Note Set) tags all note elements with every possible
fingering that they could be executed with. It is elided here for brevity. Conveniently, TimeSteps
form a monoid, with identity Rest and binary operation (<>), so we can combine whatever
element was previously in the vector at the current position with the next one in the list.

1 instance Semigroup (TimeStep f) where
2 Single n1 <> Single n2 = DoubleStop n1 n2
3 Single n1 <> DoubleStop n2 n3 = TripleStop n1 n2 n3
4 Single n1 <> TripleStop n2 n3 n4 = QuadrupleStop n1 n2 n3 n4
5 DoubleStop n1 n2 <> Single n3 = TripleStop n1 n2 n3
6 TripleStop n1 n2 n3 <> Single n4 = QuadrupleStop n1 n2 n3 n4
7 DoubleStop n1 n2 <> DoubleStop n3 n4 = QuadrupleStop n1 n2 n3 n4
8 n <> Rest = n
9 Rest <> n = n

10 n1 <> n2 = error $
11 "Unsatisfiably large constraint - too many notes to cover at one time: "
12 <> show n1 <> " | " <> show n2

Since there might be adjacent identical TimeSteps in the vector, we collapse it into a list of Step
Sets, where a Step is a TimeStep with a duration.

39

B.2. FINGERING PENALTIES

1 data Step f = Step {_timestep :: TimeStep f, _duration :: Int}
2 deriving (Show, Eq)
3

4 coalesceTimeSteps :: Vector (TimeStep f) -> [Step f]
5 coalesceTimeSteps = fmap (\ts -> Step (NE.head ts) (length ts)) . NE.group

B.2 Fingering penalties

A penalty is a record containing a name, cost function, and numerical weight.

1 data Penalty step a = P
2 { _pName :: Text
3 , _pCost :: step -> a
4 , _pWeight :: a
5 }
6

7 type Penalty1 = Penalty AssignedStep
8

9 type Penalty2 = Penalty (AssignedStep , AssignedStep)
10

11 type Weights a = Map Text a

For convenience, we define predicates on diatonic intervals and some starting values for costs
and weights.

1 halfSteps :: Note f -> Note f -> Int
2 halfSteps p1 p2 = abs (pitch p2 - pitch p1)
3 _p1 p1 p2 = halfSteps p1 p2 == 0
4 _p4 p1 p2 = halfSteps p1 p2 == 5
5 _p5 p1 p2 = halfSteps p1 p2 == 7
6 _p8 p1 p2 = halfSteps p1 p2 == 12
7 _m2 p1 p2 = halfSteps p1 p2 == 1
8 _M2 p1 p2 = halfSteps p1 p2 == 2
9 _m3 p1 p2 = halfSteps p1 p2 == 3

10 _M3 p1 p2 = halfSteps p1 p2 == 4
11 _a4 p1 p2 = halfSteps p1 p2 == 6
12 _m6 p1 p2 = halfSteps p1 p2 == 8
13 _M6 p1 p2 = halfSteps p1 p2 == 9
14 _m7 p1 p2 = halfSteps p1 p2 == 10
15 _M7 p1 p2 = halfSteps p1 p2 == 11

40

B.2. FINGERING PENALTIES

16 -- minor 9th or higher
17 _m9 p1 p2 = halfSteps p1 p2 > 12
18 second p1 p2 = _m2 p1 p2 || _M2 p1 p2
19 third p1 p2 = _m3 p1 p2 || _M3 p1 p2
20 sixth p1 p2 = _m6 p1 p2 || _M6 p1 p2
21 seventh p1 p2 = _m7 p1 p2 || _M7 p1 p2
22

23 infinity , high, medium, low :: Num a => a
24 infinity = 1000000000000000
25 high = 100
26 medium = 50
27 low = 1

The penalties on single steps consist of the following.

1 p1s :: Num a => [Penalty1 a]
2 p1s =
3 singles
4 <> doubleStops
5 <> [trill
6 , chordAdjacent
7 , staticTripleStop
8 , staticQuadrupleStop
9]

10

11 singles, doubleStops :: Num a => [Penalty1 a]
12 singles = [highPosition , mediumPosition , fourthFinger , openString]
13 doubleStops =
14 [staticUnison
15 , staticSecond
16 , staticThird
17 , staticThirdAdjacentFingers
18 , staticMajorThird4_3
19 , staticFourth
20 , staticFifth
21 , staticSixth
22 , staticMajorSixth
23 , staticSeventh
24 , staticMinorSeventh
25 , staticMajorSeventh
26 , staticOctave
27 , staticTenth

41

B.2. FINGERING PENALTIES

28]
29

30 binarize :: Num a => Bool -> a
31 binarize b = if b then 1 else 0
32

33 trill :: Num a => Penalty1 a
34 trill = P "trill" cost high
35 where
36 cost step = case step ^. timestep of
37 Rest -> 0
38 Single n ->
39 case n
40 ^? xmlRef . to deref
41 . deep (failing (ell "trill-mark") (ell "wavy-line")) of
42 Just _ -> case n ^. fgr of
43 Open -> high
44 One -> 0
45 Two -> 0
46 Three -> if step ^. duration >= 4 then infinity else high
47 Four -> infinity
48 Nothing -> 0
49 DoubleStop n1 n2 ->
50 cost (set timestep (Single n1) step) +
51 cost (set timestep (Single n2) step)
52 -- there should never be trills on triple/quadruple stops...
53 _ -> 0
54

55 highPosition :: Num a => Penalty1 a
56 highPosition = P "high position" cost medium
57 where
58 cost step = binarize $
59 anyOf (notes . fingering . to position . traversed)
60 (>= EighthAndUp) step
61

62 mediumPosition :: Num a => Penalty1 a
63 mediumPosition = P "medium position" cost low
64 where
65 cost step = binarize $
66 anyOf (notes . fingering . to position . traversed)
67 (>= Fourth) step
68

42

B.2. FINGERING PENALTIES

69 fourthFinger :: Num a => Penalty1 a
70 fourthFinger = P "fourth finger" cost 0
71 where
72 cost step = binarize $ step ^? timestep . _Single . fgr == Just Four
73

74 openString :: Num a => Penalty1 a
75 openString = P "open string" cost 0
76 where
77 cost step = binarize $ anyOf (notes . fgr) (== Open) step
78

79 --
80 -- Double Stops
81 --
82 chordAdjacent :: Num a => Penalty1 a
83 chordAdjacent = P "chords on adjacent strings" cost high
84 where
85 cost step =
86 case sort $ step ^.. notes . str of
87 [] -> 0 -- rest
88 [_] -> 0
89 [s1, s2] | dist s2 s1 == 1 -> 0
90 [G, D, A] -> 0
91 [D, A, E] -> 0
92 [G, D, A, E] -> 0
93 _ -> infinity
94

95 staticMajorThird4_3 :: Num a => Penalty1 a
96 staticMajorThird4_3 = P "static major third 4-3" cost medium
97 where
98 cost (Step (DoubleStop n1 n2) _)
99 | _M3 n1 n2 =

100 let higherThan pos =
101 anyOf
102 (traversed . fingering . to position . traversed)
103 (>= pos)
104 [n1, n2]
105 in case (n1 ^. fgr, n2 ^. fgr) of
106 (Four, Three) -> if higherThan Fourth then 1 else high
107 _ -> 0
108 cost _ = 0
109

43

B.2. FINGERING PENALTIES

110 staticThirdAdjacentFingers :: Num a => Penalty1 a
111 staticThirdAdjacentFingers = P "static third nonstandard" cost high
112 where
113 cost (Step (DoubleStop n1 n2) _) | third n1 n2 =
114 case (n1 ^. fgr, n2 ^. fgr) of
115 (Three, Two) -> high
116 (Two, One) -> high
117 _ -> 0
118 cost _ = 0
119

120 staticThird :: Num a => Penalty1 a
121 staticThird = P "static third" cost high
122 where
123 cost (Step (DoubleStop n1 n2) _) | third n1 n2 =
124 case (n1 ^. fgr, n2 ^. fgr) of
125 (Three, One) -> 0
126 (Four, Two) -> 0
127 (_, Open) -> 0
128 (Open, _) -> 0
129 (f1, f2) | f1 <= f2 -> infinity
130 _ -> 0
131 cost _ = 0
132

133 staticSixth :: Num a => Penalty1 a
134 staticSixth = P "static sixth" cost high
135 where
136 cost (Step (DoubleStop n1 n2) _) | sixth n1 n2 =
137 case (n1 ^. fgr, n2 ^. fgr) of
138 (One, Two) -> 0
139 (Two, Three) -> 0
140 (Three, Four) -> 0
141 (_, Open) -> low
142 (Open, _) -> low
143 (f1, f2) | f1 >= f2 -> infinity
144 _ -> 0
145 cost _ = 0
146

147 staticMajorSixth :: Num a => Penalty1 a
148 staticMajorSixth = P "static major sixth" cost high
149 where
150 cost (Step (DoubleStop n1 n2) _) | _M6 n1 n2 =

44

B.2. FINGERING PENALTIES

151 case (n1 ^. fgr, n2 ^. fgr) of
152 (One, Three) -> low
153 (Two, Four) -> low
154 (One, Four) -> high
155 _ -> 0
156 cost _ = 0
157

158 staticOctave :: Num a => Penalty1 a
159 staticOctave = P "static octave" cost high
160 where
161 cost (Step (DoubleStop n1 n2) _) | _p8 n1 n2 =
162 case (n1 ^. fgr, n2 ^. fgr) of
163 (One, Four) -> 0
164 (Open, _) -> 0
165 (One, Three) -> if n2 ^. fingering . distance >= G7 then 0 else low
166 (Two, Four) -> if n2 ^. fingering . distance >= G7 then 0 else low
167 _ -> infinity
168 cost _ = 0
169

170 staticTenth :: Num a => Penalty1 a
171 staticTenth = P "static tenth (or anything greater than an octave)" cost high
172 where
173 cost (Step (DoubleStop n1 n2) _) | _m9 n1 n2 =
174 case (n1 ^. fgr, n2 ^. fgr) of
175 (One, Four) -> 0
176 (Open, _) -> 0
177 (_, Open) -> high
178 _ -> infinity
179 cost _ = 0
180

181 staticUnison :: Num a => Penalty1 a
182 staticUnison = P "static unison" cost high
183 where
184 cost (Step (DoubleStop n1 n2) _)
185 | _p1 n1 n2 =
186 let f1 = n1 ^. fingering
187 f2 = n2 ^. fingering
188 in -- Make sure that f1 refers to the lower string
189 case (min f1 f2 ^. finger, max f1 f2 ^. finger) of
190 (Four, One) -> 0
191 (Open, _) -> 0

45

B.2. FINGERING PENALTIES

192 (_, Open) -> 0
193 _ -> infinity
194 cost _ = 0
195

196 staticSecond :: Num a => Penalty1 a
197 staticSecond = P "static second" cost high
198 where
199 cost (Step (DoubleStop n1 n2) _) | second n1 n2 =
200 case (n1 ^. fgr, n2 ^. fgr) of
201 (Four, One) -> 0
202 (Open, _) -> 0
203 (_, Open) -> 0
204 _ -> infinity
205 cost _ = 0
206

207 staticFourth :: Num a => Penalty1 a
208 staticFourth = P "static fourth" cost high
209 where
210 cost (Step (DoubleStop n1 n2) _) | _a4 n1 n2 || _p4 n1 n2 =
211 case (n1 ^. fgr, n2 ^. fgr) of
212 (Two, One) -> 0
213 (Three, Two) -> 0
214 (Four, Three) -> 0
215 (Open, _) -> 0
216 (_, Open) -> 0
217 _ -> infinity
218 cost _ = 0
219

220 staticFifth :: Num a => Penalty1 a
221 staticFifth = P "static fifth" cost high
222 where
223 cost (Step (DoubleStop n1 n2) _) | _p5 n1 n2 =
224 case (n1 ^. fgr, n2 ^. fgr) of
225 (f1, f2) | f1 == f2 -> 0
226 (Open, _) -> 0
227 (_, Open) -> 0
228 _ -> infinity
229 cost _ = 0
230

231 staticSeventh :: Num a => Penalty1 a
232 staticSeventh = P "static seventh" cost high

46

B.2. FINGERING PENALTIES

233 where
234 cost (Step (DoubleStop n1 n2) _) | seventh n1 n2 =
235 case (n1 ^. fgr, n2 ^. fgr) of
236 (Open, _) -> 0
237 (_, Open) -> 0
238 (f1, f2) | f1 >= f2 -> infinity
239 _ -> 0
240 cost _ = 0
241

242 staticMinorSeventh :: Num a => Penalty1 a
243 staticMinorSeventh = P "static minor seventh" cost high
244 where
245 cost (Step (DoubleStop n1 n2) _) | _m7 n1 n2 =
246 case (n1 ^. fgr, n2 ^. fgr) of
247 (One, Three) -> 0
248 (Two, Four) -> 0
249 (One, Two) -> low
250 (Two, Three) -> low
251 (Three, Four) -> medium
252 _ -> 0
253 cost _ = 0
254

255 staticMajorSeventh :: Num a => Penalty1 a
256 staticMajorSeventh = P "static major seventh" cost high
257 where
258 cost (Step (DoubleStop n1 n2) _) | _M7 n1 n2 =
259 case (n1 ^. fgr, n2 ^. fgr) of
260 (One, Three) -> 0
261 (Two, Four) -> 0
262 _ -> 0
263 cost _ = 0
264

265 ---
266 -- Triple/Quadruple Stops
267 ---
268

269 staticTripleStop :: Num a => Penalty1 a
270 staticTripleStop = P "static triple stop" cost high
271 where
272 cost step =
273 case sortOn (view str) $

47

B.2. FINGERING PENALTIES

274 step ^.. timestep . _TripleStop . each of
275 ns@[n1, n2, n3] ->
276 applyP1s mempty doubleStops (set timestep (DoubleStop n1 n2) step)
277 + applyP1s mempty doubleStops (set timestep (DoubleStop n2 n3) step)
278 + let [f1, _, f3] = ns ^.. traversed . fgr
279 in if f1 == f3 && f1 /= Open then infinity else 0
280 _ -> 0
281

282 staticQuadrupleStop :: Num a => Penalty1 a
283 staticQuadrupleStop = P "static quadruple stop" cost high
284 where
285 cost step =
286 case sortOn (view str) $
287 step ^.. timestep . _QuadrupleStop . each of
288 ns@[n1, n2, n3, n4] ->
289 let [f1, f2, f3, f4] = ns ^.. traversed . fgr
290 in if any
291 (\(x, y) -> x == y && x /= Open)
292 [(f1, f3), (f2, f4), (f1, f4)]
293 then infinity
294 else 0
295 _ -> 0

For adjacent time steps, we have

1 p2s :: Num a => [Penalty2 a]
2 p2s =
3 [oneFingerHalfStep
4 , samePosition
5 , sameString
6 , augmentedSecond
7 , doubleStringCrossing
8 , obliqueFingerCrossing
9 , fourOneUpShift

10]
11

12 oneFingerHalfStep :: Num a => Penalty2 a
13 oneFingerHalfStep = P "one finger half step shift" cost (- medium)
14 where
15 cost (Step (Single n1) _, Step (Single n2) _)
16 | and [_m2 n1 n2, n1 ^. fgr == n2 ^. fgr, n1 ^. str == n2 ^. str] = 1
17 cost _ = 0

48

B.2. FINGERING PENALTIES

18

19 samePosition :: Num a => Penalty2 a
20 samePosition = P "same position" cost (- high)
21 where
22 cost (Step (Single n1') _, Step (Single n2') _) =
23 let [n1, n2] = sortOn pitch [n1', n2']
24 (f1, s1, f2, s2) = (n1 ^. fgr, n1 ^. str, n2 ^. fgr, n2 ^. str)
25 in binarize $
26 if
27 | second n1 n2 ->
28 or
29 [dist f2 f1 == 1 && s2 == s1
30 , dist s2 s1 == 1 && (f1, f2) == (Four, One)
31 , Open `elem` [f1, f2]
32]
33 | third n1 n2 ->
34 or
35 [dist f2 f1 == 2 && s2 == s1
36 , dist s2 s1 == 1 && dist f2 f1 == 2
37 , Open `elem` [f1, f2]
38]
39 | _p4 n1 n2 || _a4 n1 n2 ->
40 or
41 [(f1, f2) == (One, Four) && s2 == s1
42 , dist s2 s1 == 1 && dist f2 f1 == 3
43 , Open `elem` [f1, f2]
44]
45 | _p5 n1 n2 ->
46 or
47 [f1 == f2 && dist s2 s1 == 1
48 , Open `elem` [f1, f2]
49]
50 | _m6 n1 n2 ->
51 or
52 [dist f2 f1 == 1 && dist s2 s1 == 1
53 , dist s2 s1 == 2 && (f1, f2) == (Four, One)
54 , Open `elem` [f1, f2]
55]
56 | _M6 n1 n2 ->
57 or
58 [dist f2 f1 `elem` [1, 2] && dist s2 s1 == 1

49

B.2. FINGERING PENALTIES

59 , dist s2 s1 == 2 && (f1, f2) == (Four, One)
60 , Open `elem` [f1, f2]
61]
62 | seventh n1 n2 ->
63 or
64 [dist f2 f1 == 2 && dist s2 s1 == 1
65 , dist s2 s1 == 2 && dist f2 f1 == 2
66 , Open `elem` [f1, f2]
67]
68 | _p8 n1 n2 ->
69 or
70 [dist s2 s1 == 1 && dist f2 f1 == 3
71 , dist s2 s1 == 2 && dist f1 f2 == 1
72 , Open `elem` [f1, f2]
73]
74 | otherwise ->
75 not . null $
76 F.foldr1
77 L.intersect
78 (map position [n1 ^. fingering , n2 ^. fingering])
79 cost steps =
80 let positions = steps ^.. both . notes . fingering . to position
81 in binarize $ not (null (F.foldr1 L.intersect positions))
82

83 augmentedSecond :: Num a => Penalty2 a
84 augmentedSecond = P "augmented second 1-2, 2-3" cost medium
85 where
86 cost (x, y) = case (x ^. timestep , y ^. timestep) of
87 (Single n1, Single n2) ->
88 binarize $
89 _m3 n1 n2 && (n1 ^. fgr, n2 ^. fgr)
90 `elem` [(One, Two), (Two, One), (Two, Three), (Three, Two)]
91 _ -> 0
92

93 sameString :: Num a => Penalty2 a
94 sameString = P "same string" cost (- high)
95 where
96 cost (x, y) = case (x ^. timestep , y ^. timestep) of
97 (Single n1, Single n2) -> binarize $ n1 ^. str == n2 ^. str
98 (DoubleStop n11 n12, DoubleStop n21 n22) ->
99 binarize $ n11 ^. str == n21 ^. str && n12 ^. str == n22 ^. str

50

B.2. FINGERING PENALTIES

100 (Single n1, DoubleStop n21 n22) ->
101 binarize $ (n1 ^. str) `elem` [n21 ^. str, n22 ^. str]
102 (DoubleStop n11 n12, Single n2) ->
103 binarize $ (n2 ^. str) `elem` [n11 ^. str, n12 ^. str]
104 _ -> 0
105

106 doubleStringCrossing :: Num a => Penalty2 a
107 doubleStringCrossing = P "double string crossing" cost high
108 where
109 cost (Step (Single n1) _, Step (Single n2) _) =
110 binarize $ abs (dist (n1 ^. str) (n2 ^. str)) > 1
111 cost _ = 0
112

113 obliqueFingerCrossing :: Num a => Penalty2 a
114 obliqueFingerCrossing = P "oblique finger crossing" cost high
115 where
116 cost (Step (Single n1) _, Step (Single n2) _) =
117 binarize $
118 abs (dist (n1 ^. str) (n2 ^. str)) == 1 && n1 ^. fgr == n2 ^. fgr
119 cost _ = 0
120

121 fourOneUpShift :: Num a => Penalty2 a
122 fourOneUpShift = P "shift up a step with 4-1" cost high
123 where
124 cost (Step (Single n1) _, Step (Single n2) _)
125 | and
126 [second n1 n2
127 , pitch n1 < pitch n2
128 , n1 ^. fgr == Four
129 , n2 ^. fgr == One
130 , n1 ^. str == n2 ^. str
131] =
132 1
133 cost _ = 0

51

Bibliography

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2003/2009). Introduction to algorithms.
MIT Press. https://edutechlearners.com/download/Introduction_to_algorithms-3rd%
20Edition.pdf

Crawford, T., & Lewis, R. (2016). Review: Music encoding initiative. Journal of the American Mu-

sicological Society, 69(1), 273–285. https://doi.org/10.1525/jams.2016.69.1.273
Daudin, C., Fober, D., Letz, S., & Orlarey, Y. (2009). The guido engine - a toolbox for music scores

rendering.
Eppstein, D. (1997). Finding the k shortest paths. https://doi.org/10.1137/S0097539795290477
Flesch, C., Rosenblith, E., & Mutter, A.-S. (1924/2000). The art of violin playing. Carl Fischer.
Flesch, C., & Rostal, M. (1942/1987). Scale system. Ries & Erler; Carl Fischer.
Flesch, C., Schwarz, B., & Menuhin, Y. (1966/1978). Violin fingering its theory and practice. Barrie

& Jenkins.
Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3), 268–278.
Galamian, I. (1962). Principles of violin playing and teaching. Simon; Schuster Company.
Galamian, I., & Neumann, F. (1966). Contemporary violin technique. Galaxy Music Corporation.
Good, M. D. (2009). Using musicxml 2.0 for music editorial applications. Digitale Edition zwischen

Experiment und Standardisierung, 157–173. https://doi.org/10.1515/9783110231144.157
Huron, D. (2002). Music information processing using the humdrum toolkit: Concepts, examples,

and lessons.ComputerMusic Journal, 26, 11–26. https://doi.org/10.1162/014892602760137158
Klein, D., & Manning, C. D. (2003). A parsing: Fast exact viterbi parse selection. Proceedings of

the 2003 Conference of the North American Chapter of the Association for Computational

Linguistics on Human Language Technology - Volume 1, 40–47. https://doi.org/10.3115/
1073445.1073461

52

https://edutechlearners.com/download/Introduction_to_algorithms-3rd%20Edition.pdf
https://edutechlearners.com/download/Introduction_to_algorithms-3rd%20Edition.pdf
https://doi.org/10.1525/jams.2016.69.1.273
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1515/9783110231144.157
https://doi.org/10.1162/014892602760137158
https://doi.org/10.3115/1073445.1073461
https://doi.org/10.3115/1073445.1073461

BIBLIOGRAPHY

Launchbury, J., & Peyton Jones, S. (1998). Lazy functional state threads. Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 29.
https://doi.org/10.1145/773473.178246

Lilypond, D. T. (2019). Lilypond - essay on automated music engraving. http://lilypond.org/doc/
v2.19/Documentation/essay-big-page.html

Liska, U., Bjuhr, P., & Solomon, M. Interfacing mei and gnu lilypond. In:Music encoding conference

2015. 2015, May. http://lilypondblog.org/wp-content/uploads/2015/06/mei2ly.pdf
Maezawa, A., Itoyama, K., Komatani, K., Ogata, T., & Okuno, H. G. (2012). Automated violin fin-

gering transcription through analysis of an audio recording. Computer Music Journal, 36,
57–72.

Mozart, L., Knocker, E., & Einstein, A. (1756/1985). A treatise on the fundamentals of violin playing.
Oxford University Press. https://archive.org/details/GrndlicheViolinschule1787

Myers, P. T. (2011).Guidelines for violin fingerings based on editions of ivan galamian and carl flesch

(Doctoral dissertation).
Nagata, W., Sako, S., & Kitamura, T. (2014). Violin fingering estimation according to skill level

based on hidden markov model. ICMC.
Nakamura, E., Saito, Y., & Yoshii, K. (2019). Statistical learning and estimation of piano fingering.

CoRR, abs/1904.10237. http://arxiv.org/abs/1904.10237
Nápoles López, N., Vigliensoni, G., & Fujinaga, I. (2019). The effects of translation between sym-

bolic music formats: A case-study with humdrum, lilypond, mei, and musicxml. Music

Encoding Conference.
of Musical Electronics Industry AMEI, A., & MMA, M. M. A. (2020). Midi 2.0 specification. http:

//www.midi.org
Pang, A., Stewart, D., Seefried, S., & Chakravarty, M. M. T. (2004). Plugging haskell in. Proceedings

of the 2004 ACM SIGPLAN Workshop on Haskell, 10–21. https://doi.org/10.1145/1017472.
1017478

Preedy, V. R., & Watson, R. R. (2010). Handbook of Disease Burdens and Quality of Life Measures,
4288–4288. https://doi.org/10.1007/978-0-387-78665-0_6363

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77 (2), 257–286.

Radicioni, D., Anselma, L., & Lombardo, V. (2004). An algorithm to compute fingering for string
instruments.

Ricci, R., & Zayia, G. H. (2007). On glissando. Indiana University Press. https://books.google.com/
books?id=iDQZAQAAIAAJ

53

https://doi.org/10.1145/773473.178246
http://lilypond.org/doc/v2.19/Documentation/essay-big-page.html
http://lilypond.org/doc/v2.19/Documentation/essay-big-page.html
http://lilypondblog.org/wp-content/uploads/2015/06/mei2ly.pdf
https://archive.org/details/GrndlicheViolinschule1787
http://arxiv.org/abs/1904.10237
http://www.midi.org
http://www.midi.org
https://doi.org/10.1145/1017472.1017478
https://doi.org/10.1145/1017472.1017478
https://doi.org/10.1007/978-0-387-78665-0_6363
https://books.google.com/books?id=iDQZAQAAIAAJ
https://books.google.com/books?id=iDQZAQAAIAAJ

BIBLIOGRAPHY

Sapp, C. (2015). Graphic to symbolic representations of musical notation. In M. Battier, J. Bresson,
P. Couprie, C. Davy-Rigaux, D. Fober, Y. Geslin, H. Genevois, F. Picard, &A. Tacaille (Eds.),
Proceedings of the first international conference on technologies for music notation and rep-

resentation, tenor 2015, paris, france, may 28-30, 2015 (pp. 124–132). Institut de Recherche
en Musicologie. https://doi.org/10.5281/zenodo.923829

Sayegh, S. (1988). Artificial intelligence approach to string instrument fingering. (Doctoral disserta-
tion).

Sayegh, S. I., & Tenorio, M. F. (1989). Fingering for string instruments with the optimum path
paradigm.

Selfridge-Field, E. (Ed.). (1997). Beyond midi: The handbook of musical codes. MIT Press. https :
//doi.org/10.5555/275928

Yampolsky, I. M., Lumsden, A., & Oistrakh, D. (1980). The principles of violin fingering. Music
Department Oxford University Press.

Yegge, S. (2007). The pinocchio problem. http://steve-yegge.blogspot.com/2007/01/pinocchio-
problem.html

Ysaÿe, E., & Szigeti, J. (1967). Exerices et gammes pour violon. Schott.
Zhihui Du, Zhaoming Yin, & Bader, D. A. (2010). A tile-based parallel viterbi algorithm for biolog-

ical sequence alignment on gpu with cuda. 2010 IEEE International Symposium on Parallel

Distributed Processing, Workshops and Phd Forum (IPDPSW), 1–8. https://doi.org/10.1109/
IPDPSW.2010.5470903

54

https://doi.org/10.5281/zenodo.923829
https://doi.org/10.5555/275928
https://doi.org/10.5555/275928
http://steve-yegge.blogspot.com/2007/01/pinocchio-problem.html
http://steve-yegge.blogspot.com/2007/01/pinocchio-problem.html
https://doi.org/10.1109/IPDPSW.2010.5470903
https://doi.org/10.1109/IPDPSW.2010.5470903

	Introduction
	Literature Review
	Pedagogical Approaches to Violin Fingering
	Algorithmic Approaches to Violin Fingering

	Methodology
	Fingering Database
	User interface
	Upload a passage and render it as sheet music
	Conveniently edit fingerings and persist them to the database
	Query the server for an inferred fingering, respecting any entries made by the user

	Fingering inference
	Evaluation

	Results
	Fingering samples
	Generated fingerings
	Control group fingerings

	User responses
	Comparison with prior work

	Conclusion
	Discussion
	Future work
	Longer term memory
	User interface improvements
	Fingering data collection
	Extensibility

	Computer Representations of Symbolic Music
	Selected code samples
	Merge multiple voices into time steps
	Fingering penalties

